

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATIO	N: Bachelor of Science	in Applied Mathematics and Statistics
QUALIFICATIO	N CODE: 07BSAM	LEVEL: 7
COURSE CODE: NUM702S		COURSE NAME: NUMERICAL METHODS 2
SESSION:	NOVEMBER 2022	PAPER: THEORY
DURATION:	3 HOURS	MARKS: 100

FIRST OPPORTUNITY – QUESTION PAPER			
EXAMINER	Dr S.N. NEOSSI NGUETCHUE		
MODERATOR:	Prof S.S. MOTSA		

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)

Attachments

None

Problem 1 [40 Marks]

1-1. Show that the formula for the best line to fit data (k, y_k) at integers k for $1 \le k \le n$ is y = ax + b,

$$a = \frac{6}{n(n^2 - 1)} \left[2 \sum_{k=1}^{n} k y_k - (n+1) \sum_{k=1}^{n} y_k \right] \quad \text{and} \quad b = \frac{4}{n(n-1)} \left[(2n+1) \sum_{k=1}^{n} y_k - 3 \sum_{k=1}^{n} k y_k \right]$$

- 1-2. Establish the Padé approximation $e^x \approx R_{2,2}(x) = \frac{12 + 6x + x^2}{12 6x + x^2}$ and express $R_{2,2}$ in continued fraction form. [10]
- 1-3. Write down the general formula of $S_f(x)$, the Fourier series of a function f that is 2π periodic, piece-wise continuous and defined on $(-\pi, \pi)$.
- 1-4. Find the Fourier sine series for the 2π -periodic function $f(x) = x(\pi x)$ on $(0, \pi)$. [Hint: Assume f is an odd function. Use its Fourier representation to find the value of the infinite series

[10=7+3]

$$1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \frac{1}{9^3} + \cdots$$

Problem 2 [31 Marks]

2-1. Define $T_n(x)$, the nth degree Chebyshev polynomial of the first kind for $x \in [-1, 1]$ and show that:

(i)
$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$
, for $k \ge 1$, with $T_0(x) = 1$, $T_1(x) = x$; [5]

(ii)
$$T_n$$
 has n distinct zeros/roots $x_k = \cos\left(\frac{(2k+1)\pi}{2n}\right)$ for $0 \le k \le n-1$. [7]

- **2-2.** Use the formulae in (i) of question 2-1 to find $T_2(x)$, $T_3(x)$ and then economize [6] $P(x) = 1 + 2x^2 + 3x^3$, once.
- $\int_0^3 \frac{\sin(2x)}{1+x^5} dx = 0.6717578646 \cdots$
- **2-3-1.** Using the sequential trapezoidal rule, state the formula of T(J) = R(J,0) and then compute its values for J=0,1,2. [3+10=13]

Problem 3 [29 Marks]

3-1. For an *n*-point Gaussian quadrature rule, the Legendre polynomials $q_n(x)$, for $x \in [-1,1]$, can be generated by the recursion formula

$$q_n(x) = \left(\frac{2n-1}{n}\right) x q_{n-1}(x) - \left(\frac{n-1}{n}\right) q_{n-2}(x)$$
 for $n = 2, 3, \dots$ and $q_0(x) = 1, q_1(x) = x$.

3-1-1. Compute $q_2(x)$, $q_3(x)$ and determine the zeros of $q_3(x)$. [2+2+3=7]

- **3-1-2.** Using the zeros of $q_3(x)$ as quadrature nodes, state the associated quadrature formula and determine the corresponding weights by the method of undetermined coefficients. How do you call the rule thus obtained? [2+8+2=12]
- **3-2.** Consider the following matrix $A = \begin{bmatrix} 6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1 \end{bmatrix}$. Find its largest eigenvalue (in magnitude) and the

corresponding eigenvector after three iterations with the initial vector $x^{(0)} = (-1, 1, 1)^T$ [10]

God bless you !!!